YAPPERS: A Peer-to-Peer Lookup Service over
Arbitrary Topology

Prasanna Ganesan Qixiang Sun Hector Garcia-Molina
Computer Science Department
Stanford University, Stanford, CA 94305, USA
{prasannag, gsun, hecj@cs.stanford.edu

Abstract— sufficient and are used to limit the search radius when
Existing peer-to-peer search networks generally fall into flooding the network.

two categories: Gnutella-style systems that use arbitrary These Gnutella-style networks are deployed in real life
topology and rely on controlled flooding for search, and

systems that explicitly build an underlying topology to ef- !oecausg of their simplicity and the lack of complex state
ficiently support a distributed hash table (DHT). In this pa- Information at each peer. When a node goes down, the
per, we propose a hybrid scheme for building a peer-to-peer system loses thékey, value) associations that this node
lookup service over arbitrary network topology. Specifi- “inserted” and nothing else, which is perfectly acceptable.
cally, for each node in the search network, we build a small Hence, frequent network topology changes have very lit-
DHT consisting of nearby nodes and then provide an in- e jmpact on performance. Moreover, these systems can
telligent search mechanism that can traverse all the small operate on any type of P2P overlay network, thus allow-
DHTs. Our hybrid approach can reduce the nodes con- . s g

ing others to construct an “optimal” overlay. For exam-

tacted for a lookup by an order of magnitude compared to . . .
Gnutella, allows rapid searching of nearby nodes through PI€; Raghavan suggested a low diameter overlay with high

quick fan-out, does not reorganize the underlying overlay, connectivity in [3]; Cohen suggested constructing over-
and isolates the effect of topology changes to small areas forlays where nodes with similar content are neighbors in [4].
better scalability and stability. When there are significant bandwidth differences between
Methods Keywords: System Design, Peer-to-Peer clients, Morpheus [5] (a client using FastTrack) changes
the topology so that high bandwidth super-peers are at the
core of the overlay and low bandwidth clients are on the
I. INTRODUCTION AND RELATED WORK edge of the overlay.

We study the problem of buildingeer-to-peer lookup The flooding-based search algorithm in Gnutella-style
serviceon top of an arbitrary dynamic peer-to-peer (pzpsbetworks can also be replaced by more efficient alterna-
overlay network over which we have no control. A lookugives. Among the suggested algorithms are the iterative
service is one that maintains a dynamic set of key-valdéepening technique to slowly increase the flooding ra-
associations (usually multiple values for a single key), atis [6], using random walks instead of radial flooding for
permits queries that request values associated with a &§arch [7], and aggregating and distributing local search
A query that requests all the values associated with a K&glices to guide search direction [8].
is atotal lookup Similarly, a query that requests some In contrast to Gnutella-style networks, the second kind
values of a key is gartial lookup of systems such as CAN [9], Chord [10], Pastry [11] and

Traditionally, there have been two flavors of P2Fapestry [12] build a distributed hash table (DHT) on top
lookup services. The first kind consists of systems likef the overlay to provide efficient querying. In DHTSs,
Gnutella[1] and FastTrack[2] that do not organize the cokeys are hashed into a keyspace, and each peer assigned
tent in the network. If a peer node has sothey, value) a small segment of this keyspace. Therefore a lookup
pairs it wants to “insert”, it simply stores them itself. Conrequest for a key simply means finding the peer that is
sequently, answering a total lookup (i.e., getting all thesponsible for the hash of the key. Notice that by the
values of a key) requires flooding the entire network twonstruction of the DHT, there is no distinction in perfor-
search every node. However in practice, there is a langgnce between partial and total lookups since there is one
number of values for a single key, and they are scattenedde that has all the values of a key. So if there are many
throughout the overlay. Thus partial lookups are usualtyients interested in doing partial lookups on a particular

key, then DHT-based systems cannot take advantage of the When a node is created, there is a third party network
partial lookup and have a hot spot problem where the one layer that determines a set of live nodes as its new
node responsible for the key is overloaded. Hence, DHT neighbors in the overlay.

is more suited to searching for rare items (a key with very « Each node “owns” a (possibly empty) set of
few values) than popular items (a key with huge number (key,value) pairs. When the node joins the net-
of values). work, it registers these pairs with the lookup service.

In building DHTSs, these systems have to impose strict The node may choose to register additional pairs with
constraints on the overlay topology to guarantee efficiency the service, or delete some registered pairs at any
in their search protocol. For instance, CAN imposes a pointin time.
d-dimensional torus structure while Chord creates a ringe A node may initiate either partial lookup or total
with long-distance hop pointers. Since key-value pairs are lookup queries at any point in time.
not stored locally at each node, special care is needed te When a node leaves the system, it may or may not
preserve data when nodes leave the system. Moreover, leave gracefully.
when nodes join and leave frequently, it can affect statee When a node leaves the system, ey, value)
information at a significant number of nodes to maintain pairs that it “owns” do not need to be preserved, e.g.
the strict topology. can be deleted.

Given the advantages and disadvantages of the A node may establish connections to other nodes di-
Gnutella-style and DHT-based systems, our objective isto rectly, even if they are not neighbors in the overlay
design a hybrid system, YAPPERS (Yet Another Peer-to- network.

PEeR System), that operates on top of an arbitrary overkgth these assumptions, 16t be the set of key, value)
network, just as Gnutella does, while providing DHT-likgpairs registered with the lookup service. We define:
search efficiency. Specifically, YAPPERS builds many . TotalLookup(N, k) as the set of values returned by
small DHTs, instead of one overarching DHT, on top of the service for a total-lookup query on kéyorigi-

an arbitrary overlay and relies on an intelligent forwarding nating at nodeV.

mechanism, similar to Gnutella-style flooding, to traverse , Partial Lookup(N, k,n) as the set ofr or fewer

all the small DHTs if necessary. Our four main design values returned by the service for a partial-lookup
goals are: query on keyk originating at nodeV.

1) impose no topology constraints so that others cane Values(k) = {v|(k,v) € S}

build efficient topology independent of searching. Then the lookup service is correct if and only if:

2) optimize for partial lookups where there are many 1) TotalLookup(N,k) = Values(k) for all nodesN
values for a key and clients are satisfied by a small = gnq keyst.

subset of the values. _ 2) Partial Lookup(N,k,n) C Values(k) and
3) contact only nodes that can contribute to the search | po,iql Lookup(N, k, n)| = min(n, |V alues(k)|)
result rather than flooding blindly. for all nodesN, keysk and integers:.

4) minimize the effecr: of(;qpc_)lc()jgy chgngesfSﬁ that trl\‘/:(‘/hen nodes join or leave, we do allow temporary incon-
maintenance overhead is independent of t eoveré%tency in lookup results while nodes’ presence in the

siz€. _ _ network are being updated.
In the remainder of the paper, we first state our assump-

tions and give an overview of YAPPERS in Sections Il

and Ill. We then present the details of our algorithm that Ill. OVERVIEW OF YAPPERS

meets the above design goals in Section IV. In particu- Intuitively, YAPPERS works as follows: The keyspace

lar, we prove the correctness of our algorithm and discusfall the keys that need to be stored is partitioned into a

how to handle dynamic node arrivals and departures. \3f@all number of buckets. For ease of exposition, consider

also evaluate the performance of YAPPERS on a Gnutelln example where the keyspace is divided into two parti-

network snapshot and synthetic regular graphs in Seons. Let us say that keys are either white or gray. Every

tion VI. node in the network is also assigned a color, white or gray,
based on some criterion. For example, we could hash the
IP address of a node to determine whether it should be
white or gray. Consider the white nodein Figure 1. If

We assume the following model for each of the pe@rwants to register a value for a white ké¥,,, v1), this
nodes: pair can be stored A itself, sinceA is also white. If on

[I. PROBLEM DEFINITION AND ASSUMPTIONS

A—@ D08 @& @

Keys: {k w} {k g}

N N~ T

Lookup(k_g) A’s IN B’s EN E’s EN F's EN
leads to B leads to E leads to F leads to |

Fig. 1. Using both the immediate (denoted ki) and the extended (denoted ByV) neighborhood information, a lookup for kéy at node
A can reach all nodes that stores Key

the other hand, nodé wants to register a gray key and itgshe extended neighborhoodf the node. We discuss the

value (kg, v2), then A looks for a neighboring gray node.concept of the immediate neighborhood in Section IV-A

In this case, its neighbaB is a gray node. SaA stores and the extended neighborhood in Section IV-B. We then

this pair at nodes. proceed to define the search protocol based on these con-
Now, consider what happens at query time. A query feepts and prove that the protocol is correct. Section IV-C

a gray key needs to be forwarded only to gray nodes diiscusses node arrivals and departures.

the network, and a query for a white key only to the white

nodes. In order to exploit the partitioning of the data, we

need some way of confining queries on gray (resp., white)

keys to the gray (resp., white) nodes in the network. If the YAPPERS divides a large overlay network into many

query originates at a white node, we forward the quefnall and overlapping neighborhoods (the immediate

to a gray neighbor of the node. Notice that some whit¢eighborhoods). The data within each neighborhood is

nodes in the network might not have any gray neighbapartitioned among the neighbors like a distributed hash ta-

atall. In Figure 1, ifA’s neighbor B had also turned out ble. When a lookup occurs and the neighborhood cannot

to be white,4 wouldn’t have a gray neighbor. In the nexsatisfy the request, YAPPERS intelligently forwards the

section, we explain how to overcome this problem by exequest to nearby neighborhoods, or the entire network if

panding neighborhoods and assigning multiple colors fgcessary. These forwardings require each node to know a

nodes. Once the query makes its way into one gray nodfger set of nodes (the extended neighborhood) that cov-

we forward the query to all the gray nodes that the currets its neighbor’s neighbors.

node knows about. To guarantee that gray queries end

up being forwarded to all the gray nodes, we require that The Immediate Neighborhood

each node knows all nodes within 3 hops of it, and for- _ , _

wards a gray query to all the gray nodes it knows about inThe |mm(_ed|ate neighborhood of a nodk denot(_ed

this 3-hop radius. An example of a search for a gray k(%{ IN(4), is t_he set of “09'93 wh_erA may stor_e Its

is shown in Figure 1. The search starts at the white no gy, value) pairs. In managing the immediate neighbor-

A, which forwards the query to one of its gray neighborQ,OOdIN(A)’ we need to. address two questlo.ns: _

B. Node B then forwards it to all the gray nodes that it 1) Given anoded, which nodes should be included in

knows within 3 hops, and the process continues. Our pro- IN(A)?

tocols ensure that this forwarding terminates only after all 2) GivenIN(A), how do we partition the key space
the gray nodes have been reached. into multiple colors and assign each color to nodes

IV. BASIC ALGORITHM

More generally, if we permit a node to store a in IN(A)?
(key, value) pair at an appropriately-colored node withirMoreover, the solution must strive to maintain the follow-
h hops of it (instead of within 1 hop of it), it is suffi- ing two useful characteristics:
cient for a node to know all its neighbors withigh + 1) « Consistency If a node X is in two different neigh-
hops in order to guarantee that we can exhaustively hop borhoods/N(A) andIN (B), both A and B assign
through all the gray nodes without touching any white the same color to nod¥.
node. This statement holds when we have nodes and keye Stability. If a node X is in IN(A), then X is
of any number of colors, not just for the simple case of assigned the same color regardless hbiN(A)
2 colors. We call the nodes withitn hops themmediate changes dynamically when nodes enter or leave the
neighborhoof a node, and the nodes withtih + 1 hops system.

Both characteristics are desirable because they impr@ponsible fork.
the overall system efficiency. Consistency avoids costly When a nodeX executes the hashing-based assignment
synchronizations among nearby nodes to determine whiddscribed above, there are two potential pitfalls:
nodes have which colors. Stability reduces data relocationl) multiple nodes inf N(X) have the same color as
when the underlying overlay network changes. the keyk

With these desired characteristics in mind, YAPPERS 2) no nodes i N(X) have the same color as the key
addresses the first question by defining the immediate k.
neighborhood of nodel, IN (A), in the overlay network we avoid pitfall1 by allowing X to pick any one of these
G as nodes to store the key. We avoid pitfalthrough abackup

o IN(A) = {v|dg(v,A) < h} wheredg returns the assignmenscheme. Specifically,

minimum distance between two nodeginin other , (Backup): When there are no nodes iV (X) that

words, /N (A) contains all nodes withih hops ofA have colorC;, color C; is assigned to a node with
in the overlay network, including nod4 itself. color C(;41ymod p- If there are multiple nodes of
Specifically, our YAPPERS implementation uses= 2. color C(; 4 1)mod »» Choose the node with the smallest

We chose a small immediate neighborhood in order to |P address.

provide long-term stability to the system. If the immediatgor example, if a key: hashes to colo€s and no IP ad-
neighborhood is large, then frequent node arrivals and @fesses of the nodes iV (X) hash to colorCs, thenk
partures within the network will incur large overheads ijj|| be stored on a node with colafs. If no such nodes
maintaining an accurate view of the immediate neighbasxist as well, we try nodes with col@¥; and so on. This
hood and reduce the efficiency of searches when the Vigyproach is similar to Chord’s consistent hashing [10] ex-
is incorrect. To make this observation more concrete, CQfept that we usé distinct hash values as opposed to all
sider the Chord network. In essence, Chord has a singd&| numbers betwedhand1.
immediate neighborhood that contains every node in thetq distinguish between the multiple colors of nalle
network. However, lookup efficiency in Chord will deyye say a coloC is the primary color of node X if X's
grade when nodes enter and leave the network frequenflyaddress hashes to col6t. Similarly, a colorC” is a
because the system takes a long time to reach a stable e@pndary color of nod& if there is some nod#& that
figuration where all the finger pointers, used by the lookiaay assignx, through the backup assignment, the color
process, are accurate. C’. Note thatY” need not to have a key of col@l’ to

Addressing the second question, YAPPERS partitioggre atx for X to have the secondary col6f. As long
the key space among the nodes/iN(A4) using the hash a5y could potentially have stored@ key atX, thenX
values of the node IP addresses. Formally, must be searched when looking 6t keys, and henc&

« anodeX with IP addresd Py is assigned keY: if is considered to have the col6f. Thus by construction,

HASH (k) = (HASH(IPx)mod b) wherebis the every node has exactly one primary color and zero or more

number of distinct hash buckets we use. secondary colors.
In other words, the keyspace is divided idtbash buck- In resolving the pitfalls mentioned above, our solution
ets, orb different colorsCy, C1,...,C, 1. We say that a is no longerconsistentand stableas envisioned eatrlier.

key k is of colorC (or hashes to colaf) if the hash func- For example, suppose nodeis in two different immedi-

tion assigng: to bucketC'. If a node IP address hasheste neighborhoodBN (A) andI N (B) andX'’s IP address

to bucketC, we say the node is of colar’. Note that hashes to colaof’s. Suppose thatifiN (A), no nodes have

by using nodes’ IP addresses, the partitioning is consalor C,. Then nodeA thinks X is responsible for both

tent across different but overlapping immediate neighbaselors C4 and C5;. However, nodeB might only know

hoods and is stable within an immediate neighborhood.X is responsible for colo€’s assuming that another node
With this simple hashing-based assignment, any nodas/ N(B) has colorCy, thus causing an inconsistency.

in YAPPERS can insert and deletecy, value) pairs into Similarly, if a nodeY with color Cj joins A’s immediate

the system. For example, suppose n&deishes to insert neighborhood, then we need to move all keys of cdlpr

a pair(k,v). Then for each nod¥ € IN(X), X locally from X toY, thus reducing stability.

computes whethel! ASH (k) = (HASH (IPy) modb). Despite this setback, the limited size of the immediate

If Y has the same color as the kieyX then sends a mes-neighborhood isolates the impact of inconsistency and in-

sage toY” for storing the paifk, v). Upon receiving such stability in YAPPERS. In reality, inconsistency and insta-

a messageY is required to store the pair. Similarly, ability only occur in poorly connected portions of the over-

lookup request for a key is sent directly to a node re-lay network (e.g., a chain of nodes) where the immediate

neighborhood is small. By probabilistic analysis [13], it
can shown that if a nodd hasblogb nodes in/N(A)
whereb is the number of hash buckets, then, with high
probability, there exists a node of each color.

B. The Extended Neighborhood

Since YAPPERS only storeey, value) pairs in the
owner nodes’ immediate neighborhoods, the answers for
a key search are scattered throughout the overlay network
in many different neighborhoods. Thus to suppofbtal
Lookup i.e., all answers must be retrieved for a lookup,
YAPPERS must have a mechanism for searching through
all the neighborhoods.

. ObViOl.JSIy’ flooding the overlay netv.vork like Gnutell ig. 2. The extended neighborhood of nadleE N (A), is the union
is a solution. However, such flooding disturbs many nOdgghe immediate neighborhood of nodes in the fronti;sAof

that do not actually have any answers for the search. To

avoid these disturbances, a nadekeeps track of a big-

ger neighborhood than its immediate neighborhood so tHahas coloiC' (k) in N (A). NodeA then tags the lookup

it can make bigger “jumps” and avoid flooding its direcfequest with a unique identifier and sends the request to
neighbors. Call this bigger neighborhood textended NnodeB.

neighborhoodand denote it byZ N (A) for nodeA. Node B, upon receiving the query, returns its local an-

Before definingE N (A), we first define thdrontier of swers toA. Afterwards, nodeB determines which nodes
node A, denoted byF(A), as all nodes that are not inare in its frontier F(B). The frontier nodes are impor-
IN(A) but are directly connected to a nodelitv(A4). tant because thego notstore the keyk at B. Hence
Formally, if N'(v) is the set of nodes directly connected t8Y finding out where its frontier nodes store the key

nodew, then nodeB can find other nodes of col@¥ (k). Moreover, the
o F(A) = U N(v) — IN(A) computation of finding other nodes of col6¥(k) can be
veIN(A) done locally at node3 without any communication be-

With the frontier, the extended neighborhostV(A) is causeEN(B), by construction, contains the immediate
then simply the union of the immediate neighborhoods Bgighborhoods of all the frontier nodes. Therefore, we

all nodes in the frontier oft. Formally, can flood only a subset of the nodes and not disturb any
« EN(A)= |J IN(@) nodes that could not have any answers. To avoid cycles in
veF(A) the forwarding step, the unique identifier, provided by the

Figure 2 illustrates the relationships between the immgource of the lookup request, is cached and used to break

diate neighborhood N(A), the frontier F(A), and the the cycles.

extended neighborhoof N(A). In this figure,h = 2. The example in Figure 1 in Section IIl (whehe= 1)

So nodesB andC are inIN(A). NodesD andFE are in illustrates this search pattern. When nodlénitiates the

the F(A) because they are connectedi?@ndC respec- search, nodel finds thatB is colored gray. Thus! con-

tively. Therefore,EN(A) includesH (part of IN(D)) tactsB. Now B returns its local content and examines

andJ (part of IN(F)). node D—its frontier node that is 2 hops away. Singe
Because YAPPERS definé®V (A) as all nodes within is the only gray node id N (D), nodeB forwards the re-

h hops of A, the above definition off IV (A) means that questto noddé’. NodeFE forwards the request t. Node

the extended neighborhood of consists of all nodes F, after examining at its frontier nodd, reached.

within 2h + 1 hops of A. Using this extended neighbor- Notice that when a nod& determines another nodé

hood, we now describe the protocol for searching throudjias the same color, we allow to contactY” directly to

all the neighborhoods, and provide a proof that guarantdesward a request, even X andY arenot neighbors in

all nodes of a given color are searched. the original overlay. So we are augmenting the overlay
1) Searching with the Extended Neighborhoddfor- with additional connections. However, these connections

mally, when a noded wants to look up a key: of color respect the original overlay. Moreover, we do not create a

C(k), it picks a node with colo€' (k) in IN(A). If there new overlay by adding these forwarding connections be-

are multiple such nodes, pick one at random. So say nddeeen nodes of the same color, hence they cannot be used

total_lookup(x, k):
/I find nodes that may have key k
S = select(HASH(k), IN(x));
choose a random Y in S;
/I start the search
result = forward(Y, k, unique_tag());
return result;

end

forward(x, k, tag):
if tag not in cache then // check cycle
answer = local_lookup(k);
cache += tag;
/I find other nodes with key k
for each node v in (IN(X) + F(x))
S = select(HASH(k), IN(v));
/I forward request
for each node w in S
answer += forward(w, k, tag);
endfor
endfor
return answer;
endif
end

/I find the subset of nodes in S
/I that has color Ck
select(Ck, S):
retval = {};
/I find nodes with hash value Ck
for each v in S
if HASH(v) = Ck mod b then
retval += v;
endif
endfor
if retval == {} then // if no nodes,
/I resort to the backup scheme
backup = select(Ck+1, S);
/I however, only need one backup
retval = Y in backup with smallest IP;
endif

return retval;
end

insert(x, k, v):

/I find nodes that can store <k,v>

S = select(HASH(k), IN(x));

choose a random Y in S;

store(Y, k, v); // tell Y to store <k, v>
end

Fig. 3. Pseudo code footal_lookup andinsert in YAPPERS. Both
procedure uses the helper functior$ect and forward.

for any other purposes such as constructing immediate and
extended neighborhoods. This approach is different from

Chord or CAN where connections between nodes can be
created at random and become part of a new overlay.

The pseudocode for performing total lookup, described
informally above, is given in Figure 3. The lookup rou-
tine uses two helper functionglect and f orward to de-
termine which nodes have a specific coférand which
nodes to forward the request to respectively. To do partial
lookups, we can modifyotal_lookup to include a hop
count limit or use random walks. For completeness, we
also include the pseudocode for insertingkay, value)
pair. Deleting a(key, value) pair is similar to inserting
one.

2) Completeness:The total_lookup algorithm guar-
antees that a search for a key eventually reaches all nodes
storing the key. In other words, starting from any node
of color C', we can reach all other nodes of cotdrusing
only the forward routine described in Figure 3. Stated
formally,

Theorem 1:(Completeness) For any two noddsand
B of color C, there exists a sequence of nodés=
20,21, 22,y - -y Zoy—1, 2y = B such that for alk < w,

Z; has colorC and Z; forwards the request t4;,; when
executing thef orward routine.

Proof. Without loss of generality, suppose there are
two colors, white and black. We prove by contradiction.
Suppose our claim is false, then there exist pairs of black
nodesX andY where we cannot go frotX to Y by fol-
lowing a sequence of black nodes using flaeward rou-
tine. Since there are a finite number of such pairs of black
nodes, we pick a pair of node4 and B such that the
distance betweerl and B in the overlay is the smallest
among all pairs of nodes that do not satisfy our claim.

Now consider the shortest overlay network path
Po,P1,-.-.,Ps from A to B wherepy = A andp, = B.
There are two casess > h+1ands < h+ 1. We
show that both cases lead to contradictions, hence prove
our claim.

Case 1: s > h + 1. This case corresponds to the
scenario shown in Figure 4. Consider the frontier node
F(A) = pp+1. There exists a black nodé € IN(F(A))
(through the backup assignment in the worst case). Since
Z is at mosth hops away fromF'(A), Z # A because
s > h + 1. Also, there does not exist a sequence of black
nodes fromZ to B using theforward routine because
otherwise we can construct a sequence frbito B going
throughZ, which is a contradiction.

Now consideré(Z, B), the distance betwee# and
B. By the triangle inequalityy(Z, B) < 6(Z,F(A)) +
d(F(A), B). By construction, we know(Z, F(A)) < h

d(Z, F(A)) <= h

Z.—O\

?}B

. F(A)
) d(F(A), B) =s-h-1 [N 4?7 e
p /\ Av ; X
> - Ps-1 s d(A, F(A)) = h+1
®e O - — 0@ ' ‘ q N
F A) (F(A), 2) <h+1
A (B
Z;
d(A.B)=s Fig. 5. NodeX assigns the color black to nodg using the backup
Fig. 4. Assuming two black nodes and B are the closest nodes mechanism, thus causes a pair of black nodear{d B) to be within

. h hops while not knowing about each other.
that cannot reach each other and is at léast 1 hops away, we can P 9

construct another pa andB whereZ is even closer t@ and cannot

reachB. i <t—h—1,wegets(Z;, X) < h+1. When this happens,

X € IN(Z;) U F(Z;) which means nodeZ; can infer
nodeB is a black node and forwar@ the lookup request.
h+s—h—1=s—1, which meansZ is closer toB Therefore, we can forward the request frofrto B via
than A and is a contradiction to our choice th&tand B the sequencel, Z,, Z, ..., Z;, B. This contradicts the
are the closest pair of black nodes that do not satisfy aasumption that there exists no sequence of black nodes
claim. Hence, the case> h + 1 cannot happen. betweend and B using forward.
Case 2:s < h + 1. First note that this case can only
occur if nodeB has multiple colors and its primary color
(based on the IP address) is not black. Otherwise, abde o
would forward the request directly to nofiawhen check- C- Maintaining Topology
ing its own immediate neighborhooflV(A). Figure 5 So far we have assumed that each node in YAPPERS
captures the scenarios for this case where nde the has enough local overlay-network topology information
culprit that assigned the extra black color to ndgleAs to determine its immediate and extended neighborhoods.
the figure depicts, nodB does not have to be on the overWe now focus on propagating topology changes as nodes
lay path fromA to X. enter and leave the overlay. We first discuss edge dele-
To prove that case 2 is also a contradiction, we explition and insertion and then proceed to node departure and
itly construct a sequence of black nodes that allows nodesival.
A to reachB. Lett = §(A, X), the distance between 1) Edge Deletion: When an edgéX,Y’) is deleted
AandX. Ift < h+1,thenX € IN(A) U F(A) from the topology, distances between some nodes might
and noded would have learned that nodgis also black increase which, in turn, may cause some YAPPERS nodes
when determining wher& stores black keys. Thus, noddgo shrink their immediate and extended neighborhoods.
A will directly reach B, a contradiction. So it must beThis behavior implies that we can limit the propagation
thatt > h + 1. In this case, consider the frontier nod@f an edge deletion event to nodes that have bétand
F(A) in Figure 5. If F(A) has assigned the color blackY” in their extended neighborhoods. Since YAPPERS uses
to B, then again we have a contradiction. (Whéexam- a2h+1 hops extended neighborhood, an edge deletion re-
ines its frontier nodes, it would discover tha&tis black, quires bothX andY to broadcast the deletion event to its
and againA would directly reachB.) So we assume thatsurviving neighbors with a time-to-live field @ hops.
F(A) has not assigne® the color black. By the backup Upon receiving the broadcast, each YAPPERS node up-
assignment schemg'(A) must know of at least one blackdates the topology and adjusts its immediate and extended

andi(F(A), B) s — h — 1. Therefore,§(Z,B) <

node inIN(F(A)), call this nodeZ,(# B). Note that
d(F(A), Z1) < h, and noded will reach Z;.

For the same reason as> h + 1, 6(Z1,X) > h +
1. However,d(Zy, X) < §(Z1,F(A)) + 6(F(A),X) <
h+(t—-—h—-1)=t—-1 <t = A, X). Therefore
if we repeat the step above (with replaced byZz,), we
can findZ; such that7; forwards the request td, and

neighborhood accordingly. Note that changes in extended
neighborhood has no effect on the node other than in de-
termining future query-routing decisions. However, if the
immediate neighborhood changes, the affected node may
have to re-add somgey, value) pairs. For example, sup-
pose nodeX is no longer in noded’s immediate neigh-
borhood after the edge is deleted, thémill have to find

d(Z2,X) <t — 2. Since each step brings us at least oreenode in the new immediate neighborhood to re-d&d
node closer taX, eventually, in a finite number of steps(key, value) pairs that were previously stored éh

2) Edge Insertion: Unlike edge deletions, broadcast-
ing a new edge’s presence is not sufficient for YAPPERS
nodes to maintain the topology. Consider the case where
two nodesX andY were previously unknown to each
other. When the new eddeX,Y) is added,X needs to GY1
know aboutY’s neighbors to rebuild its immediate and @
extended neighborhood. Moreover, nodes previously con-
nected taX may also needs to know abatits neighbors.
The naive solution is to do the same thing as edge dele-
tion but append botl’s andY's new extended neighbor-
hood information in the broadcast. However, note that if
Z was previously connected £, Z only needs the topol- ig. 6. in a Star topology, the central nodeis overloaded by the
ogy information that is withireh — 1 hops ofY” because fringe nodesB, C, D, andE as they assign large chunks of key space
Z only cares about nodes that & + 1 hops away and to 4.
these nodes are at masi — 1 hops away front”. Sim-
ilarly, if node W was previously connected t6, thenW/ Specifically, within an immediate neighborhood, YAP-
only needs topology information for nodes that2kie- 2 PERS behaves like a distributed hash table (DHT) where
hops away fromY. Using this observation, each YAP-pinpoint lookup queries are very efficient. When using
PERS node can “trim” the topology information appendeektended neighborhood to navigate between nodes of the
to the edge insertion broadcast and pass along only usesiane color, YAPPERS acts like Gnutella but with more
topology to downstream nodes. Similar to edge deletiointelligence. Notice that unlike pure DHT-based systems,
if the immediate neighborhood changes, then data reloedl-nodes in YAPPERS participate to resolve searches even
tion might be necessary if secondary colors can be moviéthere are more nodes than keys, which means hot spots
to the newly added nodes. (where many requests go to one node) are less common in
3) Node Departure and Arrival:When a nodeX with YAPPERS.
w edges leaves the network, we treat the departure as
edge deletions. Each df’s neighbors is responsible for V. ENHANCEMENTS
initiati_ng a proadcast for the appropriatg edge. As a side, experiments we performed to evaluate our basic
benefit of this approach, we do not require ndfiéo de- yAppgRS design (see Section VI), we observed some
part gracefully. performance shortcomings when running YAPPERS on
A node arrival is only slightly more involved. As nodenetworks with highly variable node degrees (e.g., a power-
X appears on the network, it first asks its new neiglyy type overlay). Specifically, we noticed two problems:
bors for their current views of the topology. Nodé thefringe nodeproblem and théarge fan-outproblem.
then merges these views to create its own extended neighy, the fringe node problema low connectivity node,
borhood. Afterwards, nod& initiates an edge insertionthrough the use of backup assignment, allocates a large
broadcast to each of its new neighbors appended with thémper of secondary colors to its high-connectivity
appropriately timmed subset of the new topology. neighbor which has no desire for the extra colors. Con-
Since both node arrival and departure only affect othgfger the star example in Figure 6. Suppose the keyspace
nodes within2h hops and is independent of the rest of divided into 36 colors. Then the central nadghaving
overlay, YAPPERS should scale better and be more stahl@odes in its immediate neighborhood, expects to han-
than systems such as Chord that support one overarchiigits own primary color and three secondary colors, for
hash table. For instance, in Chord, multiple node arriva%% of the total colors. However, the four fringe nodes
or departures will interact with each other and cause COB; ¢, D, and E will each assignl1 secondary colors to
plicated reorganization whereas YAPPERS isolates egghde A because their immediate neighborhood only has
arrival or departure to a small neighborhood. three nodes. As a result, nodeis routing lookup re-
quests forl2 out of the36 colors, or one third of the total
colors, which is much larger than the expecgetj of the
total colors.
In short, YAPPERS builds a hybrid network that re- The large fan-outproblem captures a different chal-
tains the advantages of both the unstructured P2P retige when forwarding search requests to other neighbor-
works and the structured distributed hash table networkmods. Recall that YAPPERS uses frontier nodes to de-

D. Summary

cide where to forward the request. So when a ndde The drawback of using the bias is the increase in the
does the forwarding, each dfs frontier nodes may point number of hodes we must contact for a lookup. For the
to one or more different forwarding nodes. Consequentistar example in Figure 6, suppose without the bias, all
the forwarding fan-out degree at nodeis proportional the fringe nodes assign a secondary c@ldo the central

to the number of the frontier nodes. If an overlay netiode A. Then a lookup for a key of colat’ will hit only
work’s average node degreefisthen the fan-out degreenodeA. However, if we are using bias whetie= 2, then

is O(5"*1) (which is125 for h = 2). As we will discuss all four fringe nodes have to retain col6r themselves.
more in the evaluation section, this large fan-out is d&o a lookup foiC' will hit 4 nodes instead df.

sirable when doing partial lookup because we can reach

more nodes quickly. On the other hand, for total lookuf. Reducing Forward Fan-out

large fan-out can be undesirable due to duplicate requestgor thelarge fan-outproblem, we apply three heuristics

when forwarding. to reduce the fan-out degree, thus reducing the number of
_ duplicate messages. Specifically, when nedéorwards
A. Prune Fringe Nodes a lookup request for cola®,

One obvious solution to thizinge nodeproblem isto 1) If a frontier nodeF assignsC' to nodeB via the
prune away low connectivity nodes. For example, we can backup mechanism, then forward the requedBto
recursively prune all nodes with degrédrom the over- 2) |If a frontier nodeF assignsC' to a set of nodes,
lay network to get rid of leaf nodes. With a small risk of do not forward to any nodes if\if SNIN(A) # 0.
disconnecting the overlay, we can also prune away nodes Otherwise, only forward to one of the nodesdn
with degree2 to eliminate long chains of nodes connect- 3) In heuristic (2) when choosing one node fram
ing two large components. try to pick common nodes between multiple frontier

To implement pruning in YAPPERS, a nodé, upon nodes.
arrival, determines whether itis a fringe node based on i-tﬁ;uristic (1) is necessary because the 0n|y way of reach-
local topology information. IfX is a fringe node, thelX' ing a backup nodé3 could be through the frontier node
does not participate in YAPPERS directly. Instead, node. |f no backups are necessary, then heuristics (2) and (3)
X selects a nearby high connectivity nodeas its proxy. try to avoid forwarding to far away nodes if a closer one
So whenX wants to register &key, value) pair or do a exists.
lookup search, nod&” sends the request to nodeand There are several other alternatives. For example, after
asksY” to perform the task on its behalf. nodeA has decided to forward the request to a set of nodes

The trade-off in using pruning is the extra workload o nodeA can includeS in the forwarded message to help
the proxy node’, generated by the nearby fringe nodegther nodes in reducing the fan-out. Another solution is
However, this extra workload is smaller than handling a8 run an additional pass on the stto see if two nodes
extra colorC' and forwarding requests for col6f inthe 4 B ¢ S will forward the request to each other through
entire overlay network. Note that this approach is similgfome other path. If so, pick only one node to forward. We

to organizing a Gnutella network with super-peers. Thge currently investigating these possibilities.
distinction here is that super-peers, in general, are deter-

mined based on bandwidth constraints whereas connectiv- VI. EVALUATION

ity is the criterion used in YAPPERS. To estimate statistics on YAPPERS running over a real

overlay network, we simulated YAPPERS on a snhapshot
of the Gnutella network [14] containirzy, 702 connected
An alternative solution to th&finge nodeproblem is to npodes and several synthetically generated regular graphs.
bias the backup assignment scheme so that high conngcour YAPPERS implementation, we uge= 2. For
tivity nodes do not get extra colors. Formally, h > 2, the extended neighborhood is too large because it
« (Biag: Node X can assign a backup color to nodéncludes all nodes withi@th 4 1 hops. On the other hand,
Yifand only ifa - [IN(X)| > [IN(Y)|, wherea for h = 1, the immediate neighborhood is too small to
controls the relative sizes of the neighborhoods. support more than or 5 colors.
In other words, we forbid a node with small immedi- With our implementation, we examine the search effi-
ate neighborhood assigning backup colors to a node witiency with respect to the expected fraction of nodes con-
large immediate neighborhood. In the worst case, iftacted per query, the search overhead in terms of the fan-
nodeX is unable to assign any backup colors to any nodest degree for forwarding search messages, and the op-
in IN(X), then nodeX manages these extra colors itseltimal b (number of hash buckets) to use. We focus our

B. Biased Backup Node Assignment

10

discussion of the results on the Gnutella snapshot and will CDF of Number of Colors per Node

mention relevant points about regular graphs when appro-1co T

priate. 90 r
80

70

A. Search Efficiency 60 |

tile

The efficiency of executing a total-lookup request i§ 50
captured in the expected fraction of nodes contacted, de-40 |
noted byF, during the search. This fractioA = % or |
whereC is the average number of colors assigned to each 2o | ||
node and is the number of hash buckets (colors) used. 1o}
To see this, notice thay - C = (N - F) - b becauseV - C 0 t ‘ ‘ ‘ ‘ ‘
is the total number of colors in the systefW - F) counts ° ° 0 #ifcmors 2 * *
the number of nodes having a particular color, and hengg 7. cumulative distribution plot of number of buckets per node
(N - F) - balso counts the number of colors in the systerfar YAPPERS withh = 32 and no enhancements running on Gnutella

Table I illustrates how different enhancements of YAFhapshot.

PERS affectC’ and F when running over the Gnutella

snapshot wittb = 32. The last line in the table provides For a regular graph with the same number of nodes and
the baseline comparison of running straight Gnutelladges, we found similar savings in the number of nodes
From the table, notice that to execute a total lookupentacted. However, the distribution of colors per node
Gnutella has to contact every node. In contrast, YAPPERShot heavy-tailed in that only.1% of the nodes have
only contact3% to 18% of the nodes depending on themore than8 colors and the maximum i$3 colors per
enhancement. node. Also, applying pruning or biasing has no impact
More specifically, Table | show that as we prune awasince there are no fringe nodes in a regular graph.
more fringe nodesF decreases from1.6% to 9.6% and
then t08.2%. Accordingly,C also decreases from73 to
2.64. This observation correlates with our intuition of thé?- Se€arch Overhead
fringe nodeproblem (described in Section V) where fringe As we have seen, YAPPERS is more efficient for
nodes are assigning extra secondary colors to highly caearching than Gnutella in the sense that a lookup is pro-
nected nodes. Also as expected, using the bias enharm@ssed by fewer nodes, specifically, an order of magnitude
ment increase§’ since a color previously assigned to &wer nodes than Gnutella. However, YAPPERS prop-
highly connected node has been moved to many fringgates a lookup much more “aggressively” than through
nodes. Consequently, a larger fraction of the nodes dhe original overlay. In particular, when a YAPPERS node
contacted during a lookup. Despite this increase, in tf@wards a lookup to nodes in other neighborhoods, the
next section we show biasing actually incurs less ovdan-out degree is large due to the large number of fron-
head in terms of messages generated when a search resnodes. To capture this fan-out degree, for each node
reach every node in the overlay. X and colorC, we determine the fan-out degree in the
For completeness, we show the cumulative distributiorumber of nodesy would forward the request to when
of colors per node for YAPPERS in Figure 7. The x-axikoking up a key of coloiC. We then average over all
shows the number of colors assigned to a node and thecglors and all nodes.
axis shows the percentage of nodes with equal or fewerTable Il shows the average fan-out degree for YAP-
colors. From the figure, we note that there is a smalERS with various enhancements. Notice that the basic
fraction of nodes with a large number of colors. Upowmersion has a high fan-out degreesdb. As we apply the
close examination of these nodes, we found that witholan-out reduction heuristics and avoid overloading high
using bias, this small fraction is composed of high-degr@@nnectivity nodes with extra colors, the fan-out is re-
nodes. With biasing, this fraction consists of leaf nodeiced to82. For a regular graph of comparable size, the
that are unable to give away extra colors due to the biagerage fan-out degreed3.
constraint. Figure 7 also provides further evidence thatLarge fan-out degree has both positive and negative im-
pruning indeed reduces the number of colors on the higlact on performance. On one hand, lookups are propa-
degree nodes as we reach ¥ percentile afl1 colors gated much faster through the network in YAPPERS. On
per node with pruning as opposed2bwithout. the other hand, we need extra state information to keep

11

Enhancements Nodes in Overlay Avg Colors per Node(®) | Avg Nodes Contacted per Quer¥)
None 24,702 3.73 11.6%
Pruning (Degree 1 15,785 3.10 9.6%
Pruning (Degree 2 12,081 2.64 8.2%
Bias (@ = 2) 24,702 5.90 18.5%
| Gnutella \ 24,702 \ (N/A) 100%
TABLE |

SEARCH EFFICIENCY OF RUNNINGYAPPERSWITH b = 32 ON GNUTELLA SNAPSHOT AND VARIOUS ENHANCEMENTS

Enhancements AVg Fan-out DegreE Fraction of Nodes Contacted for a Lookup
None 835.3 0.26 — , , , , s ——
ReduceFanOut 140.8 024) ‘prune-degreez’
Pruning (Deg. 2), ReduceFanOut 160.9 o2zl
Bias (@ = 2), ReduceFanOut 82.5 02}
Gnutella \ 5.2 | = ol

TABLE Il g

0.16 |
THE FANOUT DEGREE WHEN RUNNINGYAPPERSWITH b = 16

14
ON GNUTELLA SNAPSHOT AND VARIOUS ENHANCEMENTS 0

0.12

01 N

track of these nodes in the extended neighborhood andvos ;
connection states (if any). Also, when flooding the entire # of Hash Buckets

overlay of a given color, many forward messages coulty. 8. Fraction of nodes contacted during a lookup
potentially be duplicates.

Fortunately, for partial lookups, large fan-out is actu- Average Fan-Out Degree (per node per bucket)
ally desirable. Consider an example where alookup want$®® [™ Toone ——
' "prune-degree2" —x--—
50 values for a particular key. In Gnutella, that meang > | grees” o

flooding all nodes withirs or 7 hops. In YAPPERS, such £
a lookup can be answered in one forwarding step to tI?:ie
80 or so nodes because thedenodes contain data from 5 10 |
nearly all nodes withirb hops. Thus we not only get~
the answer faster but also only contact nodes that haye® [
a much higher probability of having a result. However, |§ 120 |
the lookup requires searching through the entire network
then the redundant forward messages, caused by the Iarglé’0 L, P
fan-out, could be overwhelming. In those cases, random 80— 10 15 """" '2*0 2‘5" 30 e
walk[7] or iterative deepening[6] techniques can help to # of Hash Buckets

reduce the redundant messages. Fig. 9. Average fan-out degree per node on a lookup

180 -

C. How Many Buckets to Use 20. In the case of using biasing, the best caseis 12,
The natural question is: how many hash buckets (c@nd actually deteriorates for largkr The reason for the
ors) is ideal for YAPPERS? To answer this question, wack of continuing improvement beyomd= 20 is that the
ran YAPPERS withh = 4,8,...,48. The results are size of the immediate neighborhood is the same regardless
shown in Figures 8 and 9. of how many buckets are used. Thus the best possible
First, Figure 8 shows the search efficiency where voandition occurs when every node in the neighborhood
have the fraction of nodes contacted during a lookup @ assigned exactly one bucket (color) and having more
the y-axis and the number of hash buckétsjsed on the buckets (colors) than nodes does not help matters.
x-axis. As we increase the number of buckets, the fractionSecond, Figure 9 shows the overhead in terms of the av-
of nodes contacted does not improve significantlybfor erage forwarding fan-out degree per node per hash bucket

12

(color). The y-axis shows the average degree and the x- ACKNOWLEDGMENTS

axis shows the number of hash buckétsused. Unlike \ye thank Adam Meyerson for his inputs on approxima-
the search efficiency, the average fan-out degree increaggs algorithms for the dominating set problem which led
with largerb. However, with bias, we get a relatively conyg the notion of the extended neighborhood. We also thank

stant fan-out degree as the number of buckets change. yan Greenberg for discussions regarding maintaining the
To balance the conflicting trend of the search efficienggpology information.

and the search overhead, we see that 16 is the sweet
spot for this Gnutella snapshot. If the number of buckets

_ _ REFERENCES
is smaller, then we are contacting more nodes than nec- ., _
Ll] Gnutella,” Website http://gnutella.wego.com.

essary (as _Seen In F_'gure 8). If the number O_f bu.CketS §] FastTrack, “Peer-to-peer technology company,” Website
larger, the increase in fan-out degree (seen in Figure 9) nttp://www.fasttrack.nu/, 2001.

may render the gain in contacting fewer nodes irrelevant3] G. Pandurangan, P. Raghavan, and E. Upfal, “Building low-
Of course, the begtdepends on the underlying topology. diameter peer-to-peer networks,” Rroceedings of 42nd An-
For examplep = 12 is the best for a regular graph of nual IEEE Symposium on the Foundations of Computer Science

. (FOCS) 2001.
comparable size. [4] E. Cohen, H. Kaplan, and A. Fiat, “Associative search in peer to
Notice that even though we cannot increasebitrarily peer networks: Harnessing latent semantics,” Stanford Network-

to achieve better performance, we can apply our algorithm_ N9 Seminar.

ivelv to all d ible f hash buck 5] “Morpheus,” Website http://www.musiccity.com.
recursively 1o all nodes responsibie for on€ hash buc B. Yang and H. Garcia-Molina, “Efficient search in peer-to-peer

In other words, manage each of theub-networks with networks,” inProceedings of the 22nd IEEE International Con-
another YAPPERS network. With this recursion, we can ference on Distributred Computing Systems (ICDOSgnna,
increase our performance further. Austria, July 2002.

[7] Q.Lv, P.Cao, E. Cohen, K. Li, and S. Shenker, “Search and repli-
cation in unstructured peer-to-peer networks,Pioceedings of
the 16th annual ACM International Conference on Supercomput-

VIl. CONCLUSION AND FUTURE WORK ing (ICS) 2002.
[8] A. Crespo and H. Garcia-Molina, “Routing indices for peer-to-

In this paper, we proposed our YAPPERS scheme for peer systems,” ifProceedings of the 22nd IEEE International

- Conference on Distributred Computing Systems (ICDG%)
building an efficient peer-to-peer search mechanism with- enna, Austria, July 2002.

out explicit control of the overlay network. Specifically, [9] s. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
our scheme is a hybrid that uses distributed hash ta- “A scalable content-addressable network,” Rmoceedings of
bles (DHTSs) in small areas and uses intelligent forward- ACM SIGCOMM San Diego, August 2001, pp. 149-160.

. . 10] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
ing over large areas. The main advantages are that B&l akrishnan, “Chord: A scalable peer-to-peer lookup service for

scheme: internet applications,” ifProceedings of ACM SIGCOMNBan

« disturbs only a small fraction of the nodes in the over- Diego, August 2001, pp. 160-177. _
lay for each search [11] A. Rowstron and P. Druschel, “Storage management and caching

) . . in past, a large-scale, persistent peer-to-peer storage utility,” in
« does not require restructuring the underlying overlay pyoceedings of SOSP *02001.

network. [12] B. Y. Zhao, J. Kubiatowicz, and A. Joseph, “An infrastructure
« each node requires only knowledge of a small neigh- for fault-tolerant wide-area location and routing,” Tech. Rep.
borhood and is independent of the rest of the overll UCB/CSD-01-1141, University of California at Berkeley, 2001.

. .] R. Motwani and P. RaghavarRandomized AlgorithmsCam-
and is thus less affected by node arrivals and depar- bridge University Press, 1995.

tures. [14] Clip2.com, “Clip2 gnutella crawl files,” Private collection.

For future work, we want to better quantify YAPPERS’
performance gains when doing partial lookups. In par-
ticular, what is the best strategy for forwarding a partial
lookup through YAPPERS' large fan-out network? What
are the expected savings of contacting specific nodes in
nearby neighborhoods as opposed to Gnutella flooding
all nodes withinb or 7 hops? Besides evaluating partial
lookups, we also want to study the effect of frequent node
arrivals and departures on YAPPERS. Notably, how does
YAPPERS' performance degrade in an unstable network
compared to DHTs?

