
1

YAPPERS: A Peer-to-Peer Lookup Service over
Arbitrary Topology

Prasanna Ganesan Qixiang Sun Hector Garcia-Molina
Computer Science Department

Stanford University, Stanford, CA 94305, USA
fprasannag, qsun, hectorg@cs.stanford.edu

Abstract—
Existing peer-to-peer search networks generally fall into

two categories: Gnutella-style systems that use arbitrary
topology and rely on controlled flooding for search, and
systems that explicitly build an underlying topology to ef-
ficiently support a distributed hash table (DHT). In this pa-
per, we propose a hybrid scheme for building a peer-to-peer
lookup service over arbitrary network topology. Specifi-
cally, for each node in the search network, we build a small
DHT consisting of nearby nodes and then provide an in-
telligent search mechanism that can traverse all the small
DHTs. Our hybrid approach can reduce the nodes con-
tacted for a lookup by an order of magnitude compared to
Gnutella, allows rapid searching of nearby nodes through
quick fan-out, does not reorganize the underlying overlay,
and isolates the effect of topology changes to small areas for
better scalability and stability.

Methods Keywords: System Design, Peer-to-Peer

I. INTRODUCTION AND RELATED WORK

We study the problem of building apeer-to-peer lookup
serviceon top of an arbitrary dynamic peer-to-peer (P2P)
overlay network over which we have no control. A lookup
service is one that maintains a dynamic set of key-value
associations (usually multiple values for a single key), and
permits queries that request values associated with a key.
A query that requests all the values associated with a key
is a total lookup. Similarly, a query that requests some
values of a key is apartial lookup.

Traditionally, there have been two flavors of P2P
lookup services. The first kind consists of systems like
Gnutella[1] and FastTrack[2] that do not organize the con-
tent in the network. If a peer node has somehkey; valuei
pairs it wants to “insert”, it simply stores them itself. Con-
sequently, answering a total lookup (i.e., getting all the
values of a key) requires flooding the entire network to
search every node. However in practice, there is a large
number of values for a single key, and they are scattered
throughout the overlay. Thus partial lookups are usually

sufficient and are used to limit the search radius when
flooding the network.

These Gnutella-style networks are deployed in real life
because of their simplicity and the lack of complex state
information at each peer. When a node goes down, the
system loses thehkey; valuei associations that this node
“inserted” and nothing else, which is perfectly acceptable.
Hence, frequent network topology changes have very lit-
tle impact on performance. Moreover, these systems can
operate on any type of P2P overlay network, thus allow-
ing others to construct an “optimal” overlay. For exam-
ple, Raghavan suggested a low diameter overlay with high
connectivity in [3]; Cohen suggested constructing over-
lays where nodes with similar content are neighbors in [4].
When there are significant bandwidth differences between
clients, Morpheus [5] (a client using FastTrack) changes
the topology so that high bandwidth super-peers are at the
core of the overlay and low bandwidth clients are on the
edge of the overlay.

The flooding-based search algorithm in Gnutella-style
networks can also be replaced by more efficient alterna-
tives. Among the suggested algorithms are the iterative
deepening technique to slowly increase the flooding ra-
dius [6], using random walks instead of radial flooding for
search [7], and aggregating and distributing local search
indices to guide search direction [8].

In contrast to Gnutella-style networks, the second kind
of systems such as CAN [9], Chord [10], Pastry [11] and
Tapestry [12] build a distributed hash table (DHT) on top
of the overlay to provide efficient querying. In DHTs,
keys are hashed into a keyspace, and each peer assigned
a small segment of this keyspace. Therefore a lookup
request for a key simply means finding the peer that is
responsible for the hash of the key. Notice that by the
construction of the DHT, there is no distinction in perfor-
mance between partial and total lookups since there is one
node that has all the values of a key. So if there are many
clients interested in doing partial lookups on a particular

2

key, then DHT-based systems cannot take advantage of the
partial lookup and have a hot spot problem where the one
node responsible for the key is overloaded. Hence, DHT
is more suited to searching for rare items (a key with very
few values) than popular items (a key with huge number
of values).

In building DHTs, these systems have to impose strict
constraints on the overlay topology to guarantee efficiency
in their search protocol. For instance, CAN imposes a
d-dimensional torus structure while Chord creates a ring
with long-distance hop pointers. Since key-value pairs are
not stored locally at each node, special care is needed to
preserve data when nodes leave the system. Moreover,
when nodes join and leave frequently, it can affect state
information at a significant number of nodes to maintain
the strict topology.

Given the advantages and disadvantages of the
Gnutella-style and DHT-based systems, our objective is to
design a hybrid system, YAPPERS (Yet Another Peer-to-
PEeR System), that operates on top of an arbitrary overlay
network, just as Gnutella does, while providing DHT-like
search efficiency. Specifically, YAPPERS builds many
small DHTs, instead of one overarching DHT, on top of
an arbitrary overlay and relies on an intelligent forwarding
mechanism, similar to Gnutella-style flooding, to traverse
all the small DHTs if necessary. Our four main design
goals are:

1) impose no topology constraints so that others can
build efficient topology independent of searching.

2) optimize for partial lookups where there are many
values for a key and clients are satisfied by a small
subset of the values.

3) contact only nodes that can contribute to the search
result rather than flooding blindly.

4) minimize the effect of topology changes so that the
maintenance overhead is independent of the overlay
size.

In the remainder of the paper, we first state our assump-
tions and give an overview of YAPPERS in Sections II
and III. We then present the details of our algorithm that
meets the above design goals in Section IV. In particu-
lar, we prove the correctness of our algorithm and discuss
how to handle dynamic node arrivals and departures. We
also evaluate the performance of YAPPERS on a Gnutella-
network snapshot and synthetic regular graphs in Sec-
tion VI.

II. PROBLEM DEFINITION AND ASSUMPTIONS

We assume the following model for each of the peer
nodes:

� When a node is created, there is a third party network
layer that determines a set of live nodes as its new
neighbors in the overlay.

� Each node “owns” a (possibly empty) set of
hkey; valuei pairs. When the node joins the net-
work, it registers these pairs with the lookup service.
The node may choose to register additional pairs with
the service, or delete some registered pairs at any
point in time.

� A node may initiate either partial lookup or total
lookup queries at any point in time.

� When a node leaves the system, it may or may not
leave gracefully.

� When a node leaves the system, thehkey; valuei
pairs that it “owns” do not need to be preserved, e.g.
can be deleted.

� A node may establish connections to other nodes di-
rectly, even if they are not neighbors in the overlay
network.

With these assumptions, letS be the set ofhkey; valuei
pairs registered with the lookup service. We define:

� TotalLookup(N; k) as the set of values returned by
the service for a total-lookup query on keyk origi-
nating at nodeN .

� PartialLookup(N; k; n) as the set ofn or fewer
values returned by the service for a partial-lookup
query on keyk originating at nodeN .

� V alues(k) = fvjhk; vi 2 Sg

Then the lookup service is correct if and only if:

1) TotalLookup(N; k) = V alues(k) for all nodesN
and keysk.

2) PartialLookup(N; k; n) � V alues(k) and
jPartialLookup(N; k; n)j = min(n; jV alues(k)j)
for all nodesN , keysk and integersn.

When nodes join or leave, we do allow temporary incon-
sistency in lookup results while nodes’ presence in the
network are being updated.

III. OVERVIEW OF YAPPERS

Intuitively, YAPPERS works as follows: The keyspace
of all the keys that need to be stored is partitioned into a
small number of buckets. For ease of exposition, consider
an example where the keyspace is divided into two parti-
tions. Let us say that keys are either white or gray. Every
node in the network is also assigned a color, white or gray,
based on some criterion. For example, we could hash the
IP address of a node to determine whether it should be
white or gray. Consider the white nodeA in Figure 1. If
it wants to register a value for a white keyhkw; v1i, this
pair can be stored atA itself, sinceA is also white. If on

3

A C D G H

E’s EN
leads to F

A’s IN
leads to B

B’s EN
leads to E

F’s EN
leads to I

Keys:

B E F I
{k_w} {k_g}

Lookup(k_g)

Fig. 1. Using both the immediate (denoted byIN) and the extended (denoted byEN) neighborhood information, a lookup for keykg at node
A can reach all nodes that stores keykg.

the other hand, nodeA wants to register a gray key and its
valuehkg; v2i, thenA looks for a neighboring gray node.
In this case, its neighborB is a gray node. So,A stores
this pair at nodeB.

Now, consider what happens at query time. A query for
a gray key needs to be forwarded only to gray nodes in
the network, and a query for a white key only to the white
nodes. In order to exploit the partitioning of the data, we
need some way of confining queries on gray (resp., white)
keys to the gray (resp., white) nodes in the network. If the
query originates at a white node, we forward the query
to a gray neighbor of the node. Notice that some white
nodes in the network might not have any gray neighbors
at all. In Figure 1, ifA’s neighborB had also turned out
to be white,A wouldn’t have a gray neighbor. In the next
section, we explain how to overcome this problem by ex-
panding neighborhoods and assigning multiple colors to
nodes. Once the query makes its way into one gray node,
we forward the query to all the gray nodes that the current
node knows about. To guarantee that gray queries end
up being forwarded to all the gray nodes, we require that
each node knows all nodes within 3 hops of it, and for-
wards a gray query to all the gray nodes it knows about in
this 3-hop radius. An example of a search for a gray key
is shown in Figure 1. The search starts at the white node
A, which forwards the query to one of its gray neighbors,
B. NodeB then forwards it to all the gray nodes that it
knows within 3 hops, and the process continues. Our pro-
tocols ensure that this forwarding terminates only after all
the gray nodes have been reached.

More generally, if we permit a node to store a
hkey; valuei pair at an appropriately-colored node within
h hops of it (instead of within 1 hop of it), it is suffi-
cient for a node to know all its neighbors within(2h+ 1)
hops in order to guarantee that we can exhaustively hop
through all the gray nodes without touching any white
node. This statement holds when we have nodes and keys
of any number of colors, not just for the simple case of
2 colors. We call the nodes withinh hops theimmediate
neighborhoodof a node, and the nodes within2h+1 hops

the extended neighborhoodof the node. We discuss the
concept of the immediate neighborhood in Section IV-A
and the extended neighborhood in Section IV-B. We then
proceed to define the search protocol based on these con-
cepts and prove that the protocol is correct. Section IV-C
discusses node arrivals and departures.

IV. BASIC ALGORITHM

YAPPERS divides a large overlay network into many
small and overlapping neighborhoods (the immediate
neighborhoods). The data within each neighborhood is
partitioned among the neighbors like a distributed hash ta-
ble. When a lookup occurs and the neighborhood cannot
satisfy the request, YAPPERS intelligently forwards the
request to nearby neighborhoods, or the entire network if
necessary. These forwardings require each node to know a
larger set of nodes (the extended neighborhood) that cov-
ers its neighbor’s neighbors.

A. The Immediate Neighborhood

The immediate neighborhood of a nodeA, denoted
by IN(A), is the set of nodes whereA may store its
hkey; valuei pairs. In managing the immediate neighbor-
hoodIN(A), we need to address two questions:

1) Given a nodeA, which nodes should be included in
IN(A)?

2) Given IN(A), how do we partition the key space
into multiple colors and assign each color to nodes
in IN(A)?

Moreover, the solution must strive to maintain the follow-
ing two useful characteristics:

� Consistency: If a nodeX is in two different neigh-
borhoodsIN(A) andIN(B), bothA andB assign
the same color to nodeX.

� Stability: If a node X is in IN(A), then X is
assigned the same color regardless howIN(A)

changes dynamically when nodes enter or leave the
system.

4

Both characteristics are desirable because they improve
the overall system efficiency. Consistency avoids costly
synchronizations among nearby nodes to determine which
nodes have which colors. Stability reduces data relocation
when the underlying overlay network changes.

With these desired characteristics in mind, YAPPERS
addresses the first question by defining the immediate
neighborhood of nodeA, IN(A), in the overlay network
G as

� IN(A) = fv j ÆG(v;A) � hg whereÆG returns the
minimum distance between two nodes inG. In other
words,IN(A) contains all nodes withinh hops ofA
in the overlay network, including nodeA itself.

Specifically, our YAPPERS implementation usesh = 2.
We chose a small immediate neighborhood in order to
provide long-term stability to the system. If the immediate
neighborhood is large, then frequent node arrivals and de-
partures within the network will incur large overheads in
maintaining an accurate view of the immediate neighbor-
hood and reduce the efficiency of searches when the view
is incorrect. To make this observation more concrete, con-
sider the Chord network. In essence, Chord has a single
immediate neighborhood that contains every node in the
network. However, lookup efficiency in Chord will de-
grade when nodes enter and leave the network frequently
because the system takes a long time to reach a stable con-
figuration where all the finger pointers, used by the lookup
process, are accurate.

Addressing the second question, YAPPERS partitions
the key space among the nodes inIN(A) using the hash
values of the node IP addresses. Formally,

� a nodeX with IP addressIPX is assigned keyk if
HASH(k) � (HASH(IPX) mod b) whereb is the
number of distinct hash buckets we use.

In other words, the keyspace is divided intob hash buck-
ets, orb different colorsC0; C1; : : : ; Cb�1. We say that a
keyk is of colorC (or hashes to colorC) if the hash func-
tion assignsk to bucketC. If a node IP address hashes
to bucketC, we say the node is of colorC. Note that
by using nodes’ IP addresses, the partitioning is consis-
tent across different but overlapping immediate neighbor-
hoods and is stable within an immediate neighborhood.

With this simple hashing-based assignment, any nodes
in YAPPERS can insert and deletehkey; valuei pairs into
the system. For example, suppose nodeX wishes to insert
a pairhk; vi. Then for each nodeY 2 IN(X), X locally
computes whetherHASH(k) � (HASH(IPY) mod b).
If Y has the same color as the keyk, X then sends a mes-
sage toY for storing the pairhk; vi. Upon receiving such
a message,Y is required to store the pair. Similarly, a
lookup request for a keyk is sent directly to a node re-

sponsible fork.
When a nodeX executes the hashing-based assignment

described above, there are two potential pitfalls:
1) multiple nodes inIN(X) have the same color as

the keyk
2) no nodes inIN(X) have the same color as the key

k.
We avoid pitfall1 by allowingX to pick any one of these
nodes to store the key. We avoid pitfall2 through abackup
assignmentscheme. Specifically,

� (Backup): When there are no nodes inIN(X) that
have colorCi, color Ci is assigned to a node with
color C(i+1)mod b. If there are multiple nodes of
colorC(i+1)mod b, choose the node with the smallest
IP address.

For example, if a keyk hashes to colorC5 and no IP ad-
dresses of the nodes inIN(X) hash to colorC5, thenk
will be stored on a node with colorC6. If no such nodes
exist as well, we try nodes with colorC7 and so on. This
approach is similar to Chord’s consistent hashing [10] ex-
cept that we useb distinct hash values as opposed to all
real numbers between0 and1.

To distinguish between the multiple colors of nodeX,
we say a colorC is theprimary color of nodeX if X ’s
IP address hashes to colorC. Similarly, a colorC 0 is a
secondary color of nodeX if there is some nodeY that
mayassignX, through the backup assignment, the color
C 0. Note thatY need not to have a key of colorC 0 to
store atX for X to have the secondary colorC 0. As long
asY could potentially have stored aC 0 key atX, thenX
must be searched when looking forC 0 keys, and henceX
is considered to have the colorC 0. Thus by construction,
every node has exactly one primary color and zero or more
secondary colors.

In resolving the pitfalls mentioned above, our solution
is no longerconsistentand stableas envisioned earlier.
For example, suppose nodeX is in two different immedi-
ate neighborhoodsIN(A) andIN(B) andX ’s IP address
hashes to colorC5. Suppose that inIN(A), no nodes have
color C4. Then nodeA thinksX is responsible for both
colorsC4 andC5. However, nodeB might only know
X is responsible for colorC5 assuming that another node
in IN(B) has colorC4, thus causing an inconsistency.
Similarly, if a nodeY with colorC4 joinsA’s immediate
neighborhood, then we need to move all keys of colorC4

fromX to Y , thus reducing stability.
Despite this setback, the limited size of the immediate

neighborhood isolates the impact of inconsistency and in-
stability in YAPPERS. In reality, inconsistency and insta-
bility only occur in poorly connected portions of the over-
lay network (e.g., a chain of nodes) where the immediate

5

neighborhood is small. By probabilistic analysis [13], it
can shown that if a nodeA hasb log b nodes inIN(A)
whereb is the number of hash buckets, then, with high
probability, there exists a node of each color.

B. The Extended Neighborhood

Since YAPPERS only storeshkey; valuei pairs in the
owner nodes’ immediate neighborhoods, the answers for
a key search are scattered throughout the overlay network
in many different neighborhoods. Thus to support aTotal
Lookup, i.e., all answers must be retrieved for a lookup,
YAPPERS must have a mechanism for searching through
all the neighborhoods.

Obviously, flooding the overlay network like Gnutella
is a solution. However, such flooding disturbs many nodes
that do not actually have any answers for the search. To
avoid these disturbances, a nodeA keeps track of a big-
ger neighborhood than its immediate neighborhood so that
it can make bigger “jumps” and avoid flooding its direct
neighbors. Call this bigger neighborhood theextended
neighborhoodand denote it byEN(A) for nodeA.

Before definingEN(A), we first define thefrontier of
nodeA, denoted byF (A), as all nodes that are not in
IN(A) but are directly connected to a node inIN(A).
Formally, ifN(v) is the set of nodes directly connected to
nodev, then

� F (A) =
[

v2IN(A)

N(v) � IN(A)

With the frontier, the extended neighborhoodEN(A) is
then simply the union of the immediate neighborhoods of
all nodes in the frontier ofA. Formally,

� EN(A) =
[

v2F (A)

IN(v)

Figure 2 illustrates the relationships between the imme-
diate neighborhoodIN(A), the frontierF (A), and the
extended neighborhoodEN(A). In this figure,h = 2.
So nodesB andC are inIN(A). NodesD andE are in
theF (A) because they are connected toB andC respec-
tively. Therefore,EN(A) includesH (part of IN(D))
andJ (part ofIN(E)).

Because YAPPERS definesIN(A) as all nodes within
h hops ofA, the above definition ofEN(A) means that
the extended neighborhood ofA consists of all nodes
within 2h + 1 hops ofA. Using this extended neighbor-
hood, we now describe the protocol for searching through
all the neighborhoods, and provide a proof that guarantees
all nodes of a given color are searched.

1) Searching with the Extended Neighborhood:Infor-
mally, when a nodeA wants to look up a keyk of color
C(k), it picks a node with colorC(k) in IN(A). If there
are multiple such nodes, pick one at random. So say node

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

IN(A)

A

B
C

D E

H

J

IN(D)
IN(E)

F(A)

EN(A)

Fig. 2. The extended neighborhood of nodeA, EN(A), is the union
of the immediate neighborhood of nodes in the frontier ofA.

B has colorC(k) in IN(A). NodeA then tags the lookup
request with a unique identifier and sends the request to
nodeB.

NodeB, upon receiving the query, returns its local an-
swers toA. Afterwards, nodeB determines which nodes
are in its frontierF (B). The frontier nodes are impor-
tant because theydo not store the keyk at B. Hence
by finding out where its frontier nodes store the keyk,
nodeB can find other nodes of colorC(k). Moreover, the
computation of finding other nodes of colorC(k) can be
done locally at nodeB without any communication be-
causeEN(B), by construction, contains the immediate
neighborhoods of all the frontier nodes. Therefore, we
can flood only a subset of the nodes and not disturb any
nodes that could not have any answers. To avoid cycles in
the forwarding step, the unique identifier, provided by the
source of the lookup request, is cached and used to break
the cycles.

The example in Figure 1 in Section III (whereh = 1)
illustrates this search pattern. When nodeA initiates the
search, nodeA finds thatB is colored gray. ThusA con-
tactsB. Now B returns its local content and examines
nodeD—its frontier node that is 2 hops away. SinceE
is the only gray node inIN(D), nodeB forwards the re-
quest to nodeE. NodeE forwards the request toF . Node
F , after examining at its frontier nodeH, reachesI.

Notice that when a nodeX determines another nodeY
has the same color, we allowX to contactY directly to
forward a request, even ifX andY arenot neighbors in
the original overlay. So we are augmenting the overlay
with additional connections. However, these connections
respect the original overlay. Moreover, we do not create a
new overlay by adding these forwarding connections be-
tween nodes of the same color, hence they cannot be used

6

total_lookup(x, k):
// find nodes that may have key k
S = select(HASH(k), IN(x));
choose a random Y in S;
// start the search
result = forward(Y, k, unique_tag());
return result;

end

forward(x, k, tag):
if tag not in cache then // check cycle

answer = local_lookup(k);
cache += tag;
// find other nodes with key k
for each node v in (IN(x) + F(x))

S = select(HASH(k), IN(v));
// forward request
for each node w in S

answer += forward(w, k, tag);
endfor

endfor
return answer;

endif
end

// find the subset of nodes in S
// that has color Ck
select(Ck, S):

retval = {};
// find nodes with hash value Ck
for each v in S

if HASH(v) = Ck mod b then
retval += v;

endif
endfor
if retval == {} then // if no nodes,

// resort to the backup scheme
backup = select(Ck+1, S);
// however, only need one backup
retval = Y in backup with smallest IP;

endif

return retval;
end

insert(x, k, v):
// find nodes that can store <k,v>
S = select(HASH(k), IN(x));
choose a random Y in S;
store(Y, k, v); // tell Y to store <k, v>

end

Fig. 3. Pseudo code fortotal lookup andinsert in YAPPERS. Both
procedure uses the helper functionsselect andforward.

for any other purposes such as constructing immediate and
extended neighborhoods. This approach is different from
Chord or CAN where connections between nodes can be
created at random and become part of a new overlay.

The pseudocode for performing total lookup, described
informally above, is given in Figure 3. The lookup rou-
tine uses two helper functionsselect andforward to de-
termine which nodes have a specific colorC and which
nodes to forward the request to respectively. To do partial
lookups, we can modifytotal lookup to include a hop
count limit or use random walks. For completeness, we
also include the pseudocode for inserting ahkey; valuei
pair. Deleting ahkey; valuei pair is similar to inserting
one.

2) Completeness:The total lookup algorithm guar-
antees that a search for a key eventually reaches all nodes
storing the key. In other words, starting from any node
of colorC, we can reach all other nodes of colorC using
only theforward routine described in Figure 3. Stated
formally,

Theorem 1:(Completeness) For any two nodesA and
B of color C, there exists a sequence of nodesA =

Z0; Z1; Z2; : : : ; Zw�1; Zw = B such that for alli < w,
Zi has colorC andZi forwards the request toZi+1 when
executing theforward routine.

Proof: Without loss of generality, suppose there are
two colors, white and black. We prove by contradiction.
Suppose our claim is false, then there exist pairs of black
nodesX andY where we cannot go fromX to Y by fol-
lowing a sequence of black nodes using theforward rou-
tine. Since there are a finite number of such pairs of black
nodes, we pick a pair of nodesA andB such that the
distance betweenA andB in the overlay is the smallest
among all pairs of nodes that do not satisfy our claim.

Now consider the shortest overlay network path
p0; p1; : : : ; ps from A to B wherep0 = A andps = B.
There are two cases:s � h + 1 and s < h + 1. We
show that both cases lead to contradictions, hence prove
our claim.

Case 1: s � h + 1. This case corresponds to the
scenario shown in Figure 4. Consider the frontier node
F (A) = ph+1. There exists a black nodeZ 2 IN(F (A))

(through the backup assignment in the worst case). Since
Z is at mosth hops away fromF (A), Z 6= A because
s � h+ 1. Also, there does not exist a sequence of black
nodes fromZ to B using theforward routine because
otherwise we can construct a sequence fromA toB going
throughZ, which is a contradiction.

Now considerÆ(Z;B), the distance betweenZ and
B. By the triangle inequality,Æ(Z;B) � Æ(Z;F (A)) +

Æ(F (A); B). By construction, we knowÆ(Z;F (A)) � h

7

pss−1p
. . .

BA

p0 p1 h+1
p

. . .
F(A)

... d(F(A), B) = s−h−1

d(A, B) = s

Z d(Z, F(A)) <= h

Fig. 4. Assuming two black nodesA andB are the closest nodes
that cannot reach each other and is at leasth + 1 hops away, we can
construct another pairZ andB whereZ is even closer toB and cannot
reachB.

and Æ(F (A); B) = s � h � 1. Therefore,Æ(Z;B) �
h + s � h � 1 = s � 1, which meansZ is closer toB
thanA and is a contradiction to our choice thatA andB
are the closest pair of black nodes that do not satisfy our
claim. Hence, the cases � h+ 1 cannot happen.

Case 2:s < h + 1. First note that this case can only
occur if nodeB has multiple colors and its primary color
(based on the IP address) is not black. Otherwise, nodeA

would forward the request directly to nodeB when check-
ing its own immediate neighborhoodIN(A). Figure 5
captures the scenarios for this case where nodeX is the
culprit that assigned the extra black color to nodeB. As
the figure depicts, nodeB does not have to be on the over-
lay path fromA toX.

To prove that case 2 is also a contradiction, we explic-
itly construct a sequence of black nodes that allows node
A to reachB. Let t = Æ(A;X), the distance between
A andX. If t � h + 1, thenX 2 IN(A) [F (A)

and nodeA would have learned that nodeB is also black
when determining whereX stores black keys. Thus, node
A will directly reachB, a contradiction. So it must be
that t > h + 1. In this case, consider the frontier node
F (A) in Figure 5. IfF (A) has assigned the color black
toB, then again we have a contradiction. (WhenA exam-
ines its frontier nodes, it would discover thatB is black,
and again,A would directly reachB.) So we assume that
F (A) has not assignedB the color black. By the backup
assignment scheme,F (A) must know of at least one black
node inIN(F (A)), call this nodeZ1(6= B). Note that
Æ(F (A); Z1) � h, and nodeA will reachZ1.

For the same reason ast > h + 1, Æ(Z1;X) > h +
1. However,Æ(Z1;X) � Æ(Z1; F (A)) + Æ(F (A);X) �
h + (t � h � 1) = t � 1 < t = Æ(A;X). Therefore
if we repeat the step above (withA replaced byZ1), we
can findZ2 such thatZ1 forwards the request toZ2 and
Æ(Z2;X) � t � 2. Since each step brings us at least one
node closer toX, eventually, in a finite number of steps

X

..

B

..

.
. . .

F(A)
. . .

A

Z

d(A, F(A)) = h+1
d(F(A), Z) < h+1

1

Fig. 5. NodeX assigns the color black to nodeB using the backup
mechanism, thus causes a pair of black nodes (A andB) to be within
h hops while not knowing about each other.

i � t�h�1, we getÆ(Zi;X) � h+1. When this happens,
X 2 IN(Zi) [F (Zi) which means nodeZi can infer
nodeB is a black node and forwardB the lookup request.
Therefore, we can forward the request fromA to B via
the sequenceA;Z1; Z2; : : : ; Zi; B. This contradicts the
assumption that there exists no sequence of black nodes
betweenA andB usingforward.

C. Maintaining Topology

So far we have assumed that each node in YAPPERS
has enough local overlay-network topology information
to determine its immediate and extended neighborhoods.
We now focus on propagating topology changes as nodes
enter and leave the overlay. We first discuss edge dele-
tion and insertion and then proceed to node departure and
arrival.

1) Edge Deletion: When an edge(X;Y) is deleted
from the topology, distances between some nodes might
increase which, in turn, may cause some YAPPERS nodes
to shrink their immediate and extended neighborhoods.
This behavior implies that we can limit the propagation
of an edge deletion event to nodes that have bothX and
Y in their extended neighborhoods. Since YAPPERS uses
a2h+1 hops extended neighborhood, an edge deletion re-
quires bothX andY to broadcast the deletion event to its
surviving neighbors with a time-to-live field of2h hops.

Upon receiving the broadcast, each YAPPERS node up-
dates the topology and adjusts its immediate and extended
neighborhood accordingly. Note that changes in extended
neighborhood has no effect on the node other than in de-
termining future query-routing decisions. However, if the
immediate neighborhood changes, the affected node may
have to re-add somehkey; valuei pairs. For example, sup-
pose nodeX is no longer in nodeA’s immediate neigh-
borhood after the edge is deleted, thenA will have to find
a node in the new immediate neighborhood to re-addA’s
hkey; valuei pairs that were previously stored onX.

8

2) Edge Insertion: Unlike edge deletions, broadcast-
ing a new edge’s presence is not sufficient for YAPPERS
nodes to maintain the topology. Consider the case where
two nodesX and Y were previously unknown to each
other. When the new edge(X;Y) is added,X needs to
know aboutY ’s neighbors to rebuild its immediate and
extended neighborhood. Moreover, nodes previously con-
nected toX may also needs to know aboutY ’s neighbors.

The naive solution is to do the same thing as edge dele-
tion but append bothX ’s andY ’s new extended neighbor-
hood information in the broadcast. However, note that if
Z was previously connected toX,Z only needs the topol-
ogy information that is within2h � 1 hops ofY because
Z only cares about nodes that are2h + 1 hops away and
these nodes are at most2h � 1 hops away fromY . Sim-
ilarly, if nodeW was previously connected toZ, thenW
only needs topology information for nodes that are2h�2

hops away fromY . Using this observation, each YAP-
PERS node can “trim” the topology information appended
to the edge insertion broadcast and pass along only useful
topology to downstream nodes. Similar to edge deletion,
if the immediate neighborhood changes, then data reloca-
tion might be necessary if secondary colors can be moved
to the newly added nodes.

3) Node Departure and Arrival:When a nodeX with
w edges leaves the network, we treat the departure asw

edge deletions. Each ofX ’s neighbors is responsible for
initiating a broadcast for the appropriate edge. As a side
benefit of this approach, we do not require nodeX to de-
part gracefully.

A node arrival is only slightly more involved. As node
X appears on the network, it first asks its new neigh-
bors for their current views of the topology. NodeX
then merges these views to create its own extended neigh-
borhood. Afterwards, nodeX initiates an edge insertion
broadcast to each of its new neighbors appended with the
appropriately trimmed subset of the new topology.

Since both node arrival and departure only affect other
nodes within2h hops and is independent of the rest of
overlay, YAPPERS should scale better and be more stable
than systems such as Chord that support one overarching
hash table. For instance, in Chord, multiple node arrivals
or departures will interact with each other and cause com-
plicated reorganization whereas YAPPERS isolates each
arrival or departure to a small neighborhood.

D. Summary

In short, YAPPERS builds a hybrid network that re-
tains the advantages of both the unstructured P2P net-
works and the structured distributed hash table networks.

A

B

D

CE

Fig. 6. In a Star topology, the central nodeA is overloaded by the
fringe nodesB;C;D; andE as they assign large chunks of key space
toA.

Specifically, within an immediate neighborhood, YAP-
PERS behaves like a distributed hash table (DHT) where
pinpoint lookup queries are very efficient. When using
extended neighborhood to navigate between nodes of the
same color, YAPPERS acts like Gnutella but with more
intelligence. Notice that unlike pure DHT-based systems,
all nodes in YAPPERS participate to resolve searches even
if there are more nodes than keys, which means hot spots
(where many requests go to one node) are less common in
YAPPERS.

V. ENHANCEMENTS

In experiments we performed to evaluate our basic
YAPPERS design (see Section VI), we observed some
performance shortcomings when running YAPPERS on
networks with highly variable node degrees (e.g., a power-
law type overlay). Specifically, we noticed two problems:
the fringe nodeproblem and thelarge fan-outproblem.

In the fringe node problem, a low connectivity node,
through the use of backup assignment, allocates a large
number of secondary colors to its high-connectivity
neighbor which has no desire for the extra colors. Con-
sider the star example in Figure 6. Suppose the keyspace
is divided into 36 colors. Then the central nodeA, having
9 nodes in its immediate neighborhood, expects to han-
dle its own primary color and three secondary colors, for
1
9 th of the total colors. However, the four fringe nodes
B;C;D; andE will each assign11 secondary colors to
nodeA because their immediate neighborhood only has
three nodes. As a result, nodeA is routing lookup re-
quests for12 out of the36 colors, or one third of the total
colors, which is much larger than the expected1

9 th of the
total colors.

The large fan-outproblem captures a different chal-
lenge when forwarding search requests to other neighbor-
hoods. Recall that YAPPERS uses frontier nodes to de-

9

cide where to forward the request. So when a nodeA

does the forwarding, each ofA’s frontier nodes may point
to one or more different forwarding nodes. Consequently,
the forwarding fan-out degree at nodeA is proportional
to the number of the frontier nodes. If an overlay net-
work’s average node degree is5, then the fan-out degree
is O(5h+1) (which is125 for h = 2). As we will discuss
more in the evaluation section, this large fan-out is de-
sirable when doing partial lookup because we can reach
more nodes quickly. On the other hand, for total lookup,
large fan-out can be undesirable due to duplicate requests
when forwarding.

A. Prune Fringe Nodes

One obvious solution to thefringe nodeproblem is to
prune away low connectivity nodes. For example, we can
recursively prune all nodes with degree1 from the over-
lay network to get rid of leaf nodes. With a small risk of
disconnecting the overlay, we can also prune away nodes
with degree2 to eliminate long chains of nodes connect-
ing two large components.

To implement pruning in YAPPERS, a nodeX, upon
arrival, determines whether it is a fringe node based on its
local topology information. IfX is a fringe node, thenX
does not participate in YAPPERS directly. Instead, node
X selects a nearby high connectivity nodeY as its proxy.
So whenX wants to register ahkey; valuei pair or do a
lookup search, nodeX sends the request to nodeY and
asksY to perform the task on its behalf.

The trade-off in using pruning is the extra workload on
the proxy nodeY , generated by the nearby fringe nodes.
However, this extra workload is smaller than handling an
extra colorC and forwarding requests for colorC in the
entire overlay network. Note that this approach is similar
to organizing a Gnutella network with super-peers. The
distinction here is that super-peers, in general, are deter-
mined based on bandwidth constraints whereas connectiv-
ity is the criterion used in YAPPERS.

B. Biased Backup Node Assignment

An alternative solution to thefringe nodeproblem is to
bias the backup assignment scheme so that high connec-
tivity nodes do not get extra colors. Formally,

� (Bias): NodeX can assign a backup color to node
Y if and only if � � jIN(X)j > jIN(Y)j, where�
controls the relative sizes of the neighborhoods.

In other words, we forbid a node with small immedi-
ate neighborhood assigning backup colors to a node with
large immediate neighborhood. In the worst case, if a
nodeX is unable to assign any backup colors to any nodes
in IN(X), then nodeX manages these extra colors itself.

The drawback of using the bias is the increase in the
number of nodes we must contact for a lookup. For the
star example in Figure 6, suppose without the bias, all
the fringe nodes assign a secondary colorC to the central
nodeA. Then a lookup for a key of colorC will hit only
nodeA. However, if we are using bias where� = 2, then
all four fringe nodes have to retain colorC themselves.
So a lookup forC will hit 4 nodes instead of1.

C. Reducing Forward Fan-out

For thelarge fan-outproblem, we apply three heuristics
to reduce the fan-out degree, thus reducing the number of
duplicate messages. Specifically, when nodeA forwards
a lookup request for colorC,

1) If a frontier nodeF assignsC to nodeB via the
backup mechanism, then forward the request toB.

2) If a frontier nodeF assignsC to a set of nodesS,
do not forward to any nodes inS if S\IN(A) 6= ;.
Otherwise, only forward to one of the nodes inS.

3) In heuristic (2) when choosing one node fromS,
try to pick common nodes between multiple frontier
nodes.

Heuristic (1) is necessary because the only way of reach-
ing a backup nodeB could be through the frontier node
F . If no backups are necessary, then heuristics (2) and (3)
try to avoid forwarding to far away nodes if a closer one
exists.

There are several other alternatives. For example, after
nodeA has decided to forward the request to a set of nodes
S, nodeA can includeS in the forwarded message to help
other nodes in reducing the fan-out. Another solution is
to run an additional pass on the setS to see if two nodes
A;B 2 S will forward the request to each other through
some other path. If so, pick only one node to forward. We
are currently investigating these possibilities.

VI. EVALUATION

To estimate statistics on YAPPERS running over a real
overlay network, we simulated YAPPERS on a snapshot
of the Gnutella network [14] containing24; 702 connected
nodes and several synthetically generated regular graphs.
In our YAPPERS implementation, we useh = 2. For
h > 2, the extended neighborhood is too large because it
includes all nodes within2h+1 hops. On the other hand,
for h = 1, the immediate neighborhood is too small to
support more than4 or 5 colors.

With our implementation, we examine the search effi-
ciency with respect to the expected fraction of nodes con-
tacted per query, the search overhead in terms of the fan-
out degree for forwarding search messages, and the op-
timal b (number of hash buckets) to use. We focus our

10

discussion of the results on the Gnutella snapshot and will
mention relevant points about regular graphs when appro-
priate.

A. Search Efficiency

The efficiency of executing a total-lookup request is
captured in the expected fraction of nodes contacted, de-
noted by �F , during the search. This fraction�F =

�C
b

,
where �C is the average number of colors assigned to each
node andb is the number of hash buckets (colors) used.
To see this, notice thatN � �C = (N � �F) � b becauseN � �C
is the total number of colors in the system,(N � �F) counts
the number of nodes having a particular color, and hence
(N � �F) � b also counts the number of colors in the system.

Table I illustrates how different enhancements of YAP-
PERS affect �C and �F when running over the Gnutella
snapshot withb = 32. The last line in the table provides
the baseline comparison of running straight Gnutella.
From the table, notice that to execute a total lookup,
Gnutella has to contact every node. In contrast, YAPPERS
only contacts8% to 18% of the nodes depending on the
enhancement.

More specifically, Table I show that as we prune away
more fringe nodes,�F decreases from11:6% to 9:6% and
then to8:2%. Accordingly, �C also decreases from3:73 to
2:64. This observation correlates with our intuition of the
fringe nodeproblem (described in Section V) where fringe
nodes are assigning extra secondary colors to highly con-
nected nodes. Also as expected, using the bias enhance-
ment increases�C since a color previously assigned to a
highly connected node has been moved to many fringe
nodes. Consequently, a larger fraction of the nodes are
contacted during a lookup. Despite this increase, in the
next section we show biasing actually incurs less over-
head in terms of messages generated when a search must
reach every node in the overlay.

For completeness, we show the cumulative distribution
of colors per node for YAPPERS in Figure 7. The x-axis
shows the number of colors assigned to a node and the y-
axis shows the percentage of nodes with equal or fewer
colors. From the figure, we note that there is a small
fraction of nodes with a large number of colors. Upon
close examination of these nodes, we found that without
using bias, this small fraction is composed of high-degree
nodes. With biasing, this fraction consists of leaf nodes
that are unable to give away extra colors due to the bias
constraint. Figure 7 also provides further evidence that
pruning indeed reduces the number of colors on the high
degree nodes as we reach the100 percentile at11 colors
per node with pruning as opposed to27 without.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

P
er

ce
nt

ile

of Colors

CDF of Number of Colors per Node

"none"
"prune-degree2"

"bias2"

Fig. 7. Cumulative distribution plot of number of buckets per node
for YAPPERS withb = 32 and no enhancements running on Gnutella
snapshot.

For a regular graph with the same number of nodes and
edges, we found similar savings in the number of nodes
contacted. However, the distribution of colors per node
is not heavy-tailed in that only1:1% of the nodes have
more than8 colors and the maximum is13 colors per
node. Also, applying pruning or biasing has no impact
since there are no fringe nodes in a regular graph.

B. Search Overhead

As we have seen, YAPPERS is more efficient for
searching than Gnutella in the sense that a lookup is pro-
cessed by fewer nodes, specifically, an order of magnitude
fewer nodes than Gnutella. However, YAPPERS prop-
agates a lookup much more “aggressively” than through
the original overlay. In particular, when a YAPPERS node
forwards a lookup to nodes in other neighborhoods, the
fan-out degree is large due to the large number of fron-
tier nodes. To capture this fan-out degree, for each node
X and colorC, we determine the fan-out degree in the
number of nodesX would forward the request to when
looking up a key of colorC. We then average over all
colors and all nodes.

Table II shows the average fan-out degree for YAP-
PERS with various enhancements. Notice that the basic
version has a high fan-out degree of835. As we apply the
fan-out reduction heuristics and avoid overloading high
connectivity nodes with extra colors, the fan-out is re-
duced to82. For a regular graph of comparable size, the
average fan-out degree is62.

Large fan-out degree has both positive and negative im-
pact on performance. On one hand, lookups are propa-
gated much faster through the network in YAPPERS. On
the other hand, we need extra state information to keep

11

Enhancements Nodes in Overlay Avg Colors per Node (�C) Avg Nodes Contacted per Query (�F)
None 24,702 3.73 11.6%
Pruning (Degree 1) 15,785 3.10 9.6%
Pruning (Degree 2) 12,081 2.64 8.2%
Bias (� = 2) 24,702 5.90 18.5%

Gnutella 24,702 (N/A) 100%
TABLE I

SEARCH EFFICIENCY OF RUNNINGYAPPERSWITH b = 32 ON GNUTELLA SNAPSHOT AND VARIOUS ENHANCEMENTS

Enhancements Avg Fan-out Degree
None 835.3
ReduceFanOut 140.8
Pruning (Deg. 2), ReduceFanOut 160.9
Bias (� = 2), ReduceFanOut 82.5

Gnutella 5.2
TABLE II

THE FANOUT DEGREE WHEN RUNNINGYAPPERSWITH b = 16

ON GNUTELLA SNAPSHOT AND VARIOUS ENHANCEMENTS

track of these nodes in the extended neighborhood and
connection states (if any). Also, when flooding the entire
overlay of a given color, many forward messages could
potentially be duplicates.

Fortunately, for partial lookups, large fan-out is actu-
ally desirable. Consider an example where a lookup wants
50 values for a particular key. In Gnutella, that means
flooding all nodes within5 or 7 hops. In YAPPERS, such
a lookup can be answered in one forwarding step to the
80 or so nodes because these80 nodes contain data from
nearly all nodes within5 hops. Thus we not only get
the answer faster but also only contact nodes that have
a much higher probability of having a result. However, if
the lookup requires searching through the entire network,
then the redundant forward messages, caused by the large
fan-out, could be overwhelming. In those cases, random
walk[7] or iterative deepening[6] techniques can help to
reduce the redundant messages.

C. How Many Buckets to Use

The natural question is: how many hash buckets (col-
ors) is ideal for YAPPERS? To answer this question, we
ran YAPPERS withb = 4; 8; : : : ; 48. The results are
shown in Figures 8 and 9.

First, Figure 8 shows the search efficiency where we
have the fraction of nodes contacted during a lookup on
the y-axis and the number of hash buckets,b, used on the
x-axis. As we increase the number of buckets, the fraction
of nodes contacted does not improve significantly forb >

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0 5 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n

of Hash Buckets

Fraction of Nodes Contacted for a Lookup

"none"
"prune-degree2"

"bias2"

Fig. 8. Fraction of nodes contacted during a lookup

80

100

120

140

160

180

200

220

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 F
an

-O
ut

 D
eg

re
e

pe
r

N
od

e

of Hash Buckets

Average Fan-Out Degree (per node per bucket)

"none"
"prune-degree2"

"bias2"

Fig. 9. Average fan-out degree per node on a lookup

20. In the case of using biasing, the best case isb = 12,
and actually deteriorates for largerb. The reason for the
lack of continuing improvement beyondb = 20 is that the
size of the immediate neighborhood is the same regardless
of how many buckets are used. Thus the best possible
condition occurs when every node in the neighborhood
is assigned exactly one bucket (color) and having more
buckets (colors) than nodes does not help matters.

Second, Figure 9 shows the overhead in terms of the av-
erage forwarding fan-out degree per node per hash bucket

12

(color). The y-axis shows the average degree and the x-
axis shows the number of hash buckets,b, used. Unlike
the search efficiency, the average fan-out degree increases
with largerb. However, with bias, we get a relatively con-
stant fan-out degree as the number of buckets change.

To balance the conflicting trend of the search efficiency
and the search overhead, we see thatb = 16 is the sweet
spot for this Gnutella snapshot. If the number of buckets
is smaller, then we are contacting more nodes than nec-
essary (as seen in Figure 8). If the number of buckets is
larger, the increase in fan-out degree (seen in Figure 9)
may render the gain in contacting fewer nodes irrelevant.
Of course, the bestb depends on the underlying topology.
For example,b = 12 is the best for a regular graph of
comparable size.

Notice that even though we cannot increaseb arbitrarily
to achieve better performance, we can apply our algorithm
recursively to all nodes responsible for one hash bucket.
In other words, manage each of theb sub-networks with
another YAPPERS network. With this recursion, we can
increase our performance further.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we proposed our YAPPERS scheme for
building an efficient peer-to-peer search mechanism with-
out explicit control of the overlay network. Specifically,
our scheme is a hybrid that uses distributed hash ta-
bles (DHTs) in small areas and uses intelligent forward-
ing over large areas. The main advantages are that our
scheme:

� disturbs only a small fraction of the nodes in the over-
lay for each search.

� does not require restructuring the underlying overlay
network.

� each node requires only knowledge of a small neigh-
borhood and is independent of the rest of the overlay,
and is thus less affected by node arrivals and depar-
tures.

For future work, we want to better quantify YAPPERS’
performance gains when doing partial lookups. In par-
ticular, what is the best strategy for forwarding a partial
lookup through YAPPERS’ large fan-out network? What
are the expected savings of contacting specific nodes in
nearby neighborhoods as opposed to Gnutella flooding
all nodes within5 or 7 hops? Besides evaluating partial
lookups, we also want to study the effect of frequent node
arrivals and departures on YAPPERS. Notably, how does
YAPPERS’ performance degrade in an unstable network
compared to DHTs?

ACKNOWLEDGMENTS

We thank Adam Meyerson for his inputs on approxima-
tion algorithms for the dominating set problem which led
to the notion of the extended neighborhood. We also thank
Evan Greenberg for discussions regarding maintaining the
topology information.

REFERENCES

[1] “Gnutella,” Website http://gnutella.wego.com.
[2] FastTrack, “Peer-to-peer technology company,” Website

http://www.fasttrack.nu/, 2001.
[3] G. Pandurangan, P. Raghavan, and E. Upfal, “Building low-

diameter peer-to-peer networks,” inProceedings of 42nd An-
nual IEEE Symposium on the Foundations of Computer Science
(FOCS), 2001.

[4] E. Cohen, H. Kaplan, and A. Fiat, “Associative search in peer to
peer networks: Harnessing latent semantics,” Stanford Network-
ing Seminar.

[5] “Morpheus,” Website http://www.musiccity.com.
[6] B. Yang and H. Garcia-Molina, “Efficient search in peer-to-peer

networks,” inProceedings of the 22nd IEEE International Con-
ference on Distributred Computing Systems (ICDCS), Vienna,
Austria, July 2002.

[7] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and repli-
cation in unstructured peer-to-peer networks,” inProceedings of
the 16th annual ACM International Conference on Supercomput-
ing (ICS), 2002.

[8] A. Crespo and H. Garcia-Molina, “Routing indices for peer-to-
peer systems,” inProceedings of the 22nd IEEE International
Conference on Distributred Computing Systems (ICDCS), Vi-
enna, Austria, July 2002.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” inProceedings of
ACM SIGCOMM, San Diego, August 2001, pp. 149–160.

[10] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan, “Chord: A scalable peer-to-peer lookup service for
internet applications,” inProceedings of ACM SIGCOMM, San
Diego, August 2001, pp. 160–177.

[11] A. Rowstron and P. Druschel, “Storage management and caching
in past, a large-scale, persistent peer-to-peer storage utility,” in
Proceedings of SOSP ’01, 2001.

[12] B. Y. Zhao, J. Kubiatowicz, and A. Joseph, “An infrastructure
for fault-tolerant wide-area location and routing,” Tech. Rep.
UCB/CSD-01-1141, University of California at Berkeley, 2001.

[13] R. Motwani and P. Raghavan,Randomized Algorithms, Cam-
bridge University Press, 1995.

[14] Clip2.com, “Clip2 gnutella crawl files,” Private collection.

